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IMPROVING THE ACCURACY OF CENTRAL DIFFERENCE SCHEMES
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ABSTRACT

Central difference approximations to the fluid dynamic equations require an artificial

viscosity in order to converge to a steady state. This artificial viscosity serves two purposes.

One is to suppress high frequency noise which is not ,iamped by the central differences. The

second purpose is to introduce an entropy-like con, tition so that shocks can be captured.

These viscosities need a coefficient to measure the amount of viscosity to be added. In the

standard scheme, a scalar coefficient is used based o a the spectral radius of the Jacobian of

the convective flux. However, this can add too mucll viscosity to the slower waves. Hence,

we suggest using a matrix viscosity. This gives an appropriate viscosity for each wave

component. With this matrix valued coefficient, 1he central difference scheme becomes

closer to upwind biased methods.

IThis research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-18107 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE}, NASA Langley Research Center, Hampton, VA 23665.





I. Introduci,ion

In recent years, central difference schemes h_ve been used with much success to solve

transonic flow problems about aerodynamic shapes. These schemes are second order ac-

curate for sufficiently smooth meshes and have an added artificial viscosity to stabilize

the scheme and reach a steady state. This artificial viscosity is usually a blend of two

terms. One is a fourth difference that stabiliz,;s the even-odd modes that appear with

central differences and constants coefficients. Without this viscosity, one cannot reduce

the residual beyond some level because of a remaining high frequency mode. The second

viscosity term is a nonlinear second difference tl:at limits oscillations in the neighborhood

of shocks. A nonlinear shock detector preserves the second order accuracy of the scheme

in smooth regions.

An advantage of the artificial viscosity approach is that it allows the user control

over the amount of dissipation. Nevertheless, o_m sometimes finds that there is too much

dissipation in the numerical solution. Changing the global constants that appear in the

formulas is not sufficient to construct an artifici_d viscosity that is appropriate in both the

shocked and smooth regions of the flow. For some problems, we need to severely limit

the viscosity in some smooth regions, e.g., neaJ the trailing edge, while still maintaining

stability near the shocks. Hence, although the standard artificial viscosity works well in

most cases, it is not sufficiently flexible to handle more delicate problems.

In order to improve the existing artificial vi:_cosity, we shall make use of ideas used in

the construction of upwind schemes. In particular, we shall replace the scalar coefficient in

the artificial viscosity by a matrix. To prevent difficulties near stagnation points, a cutoff

is introduced that depends on the spectral radius of the matrix. By varying the cutoff,

one can obtain an appropriate average betweerL the original scalar viscosity and the new

matrix viscosity. Since the matrix viscosity reduces the amount of smoothing on the slower

waves, it will improve the total accuracy of the scheme.

as

where

II. Finite Volume Formulation and Artificial Viscosity

The Euler equations for an inviscid compres.':_ible flow can be written in divergence form

Of Og Oh
i) Q -I- -I- -+--- = 0 (1)
a-7

Q = (p, pu, pw, E) t (2a)



and for an ideal gas

f = (p=,p=' + ,, p,v, p,=, (E + ,)_)'

g = (pv.puv,pv' + p,pvw,(E + p)v)t

h = (pw,puw,pvw,pw2+ p,(E + p)w)t

p = CA/-- 1)[E - pCu 2 + v 2 + w2)/2].

We can also write (1) in the form

(2b)

(2_)

(2d)

(2e)

OQ
O--T + div(F) = O. (lb)

We integrate (1) over a three dimensional cell and consider Q_j,k as an approximation

to the average of Q over the cell. Hence,

cOQi,i,_ f f f divFdV

cgt f f f dE

or using the divergence theorem,

=0

+f f  ..as o.

Hence, the time change of the average Q is governed by the fluxes entering and leaving the
cell.

This finite volume approach leads to a pure central difference method for Cartesian

grids. Though this scheme is stable for constant coefficient hyperbolic equations it is

subject to instabilities that will prevent the convergence to a steady state. To enhance

this convergence a fourth difference viscosity is added to the scheme. The fourth difference

causes oscillations in the neighborhood of shocks. Hence, a shock detector is constructed

and near the shocks the fourth difference is turned off and only the nonlinear second

difference is operative. The total artificial viscosity, V, is the sum of such second and

fourth differences in each coordinate direction.

V,o, = , . - , • + W. , - W,.i-_.k_,$,k -- _,$,k i,j+ _,k

+V[ij,k+ _- - V--_i,j,,- _- (4)

Hence it is sufficient to describe these terms in the _ direction. Since we only take differ-

ences at neighboring points the artificial viscosity is always in conservation form.

The first difference is defined as

Di+, 'k = Qi+ld,k - Qij, k (5a)



and the second _ difference is defined as

Ei,i,k = Di+, ._ -Di_ (5b),_, ½,j,k"

We then form the second and fourth differences. In particular the fourth difference is

formed as a second difference of a second differe:lce with positive weights [3,8]. Hence,

V--_+½,i,k -(_) D , • - (e !4.:- . E,+I "k- e_),kE,,i,k).= "i+ ½,i,k i+ _,_,k x t-r l,i,lt ,_,
(6)

Let,

Pi+l,i,k - 2pi i,k + Pi-l,i,k (7a)
Vi,j, k

Pi+l,i,k + 2pi i,I, + Pi-l,i,k

t_i,j,_ is used to detect the location of shocks. W_Jen vi,i,k is large then the fourth difference

is reduced. Let,

a,+ ½,i,k = K(*) max(v,_ ,,i,k, _,,i,k, v,+ ,,i,k, v,+ 2,i,k). (8)

We also multiply a by a function of the Mach n umber to reduce a near the surface. Let,

aT a_ a_ where F,G,H are the fluxes in the coordinate system (_,77,_).
A = _-_,B = _-q, C = _,

Let A be a measure of the fluxes. The original code chose ,k as

_ = _,7 = _, = p(A) + p(B) + p(C) (9a)

where p is the the spectral radius of the matrix. For problems with a highly stretched

mesh it was found [2,3,8] that for increased accuracy one should choose

A¢= p(A), = , = (9b)

K(2), K (4) are constants that determine the hvel of the second and fourth differences.

These constants are given as input to the code. Then

t(2) =),. ,. a. i • (10a)
i+ ½,./,k ,+ _-,:,k t+ _,_,k

e_),k = _',,i,k max(0, K c4) - a_,i,j, ). (10b)

In order to imitate the upwind type [7] algcrithms we now replace the scalars in (9b)

by matrices. Hence,

he = IAI, _, = II_l ' _, = iel (9c)

where IAI = TIA¢I T-_ when A =TA¢T -_ and h,, is a diagonal matrix with the eigenvalues

of A as its entries. This definition of $ can lead to difficulties when an eigenvalue is near

zero. Hence, we modified A_ to be

A_ = diag(max(ai, qp(A)) ai = e.v. of A (11)

3



where q is a specified constant. When q -- 1, then A_ = p(A) • I and so (9b) is recovered.

When q = 0 then no modification of A_ is done. In general, we found that q = 0.2 gives

good results.

We point out that the use of (9c) does not allow for a constant enthalpy solution and

so enthalpy damping cannot be used [5].

III. Results

We consider the central difference code with Runge-Kutta time stepping [3,5]. As de-

scribed above we use a matrix valued artificial viscosity which approximates TVD type

schemes [6,7,9]. The fourth difference viscosity is still needed to allow the multigrid accel-

eration to quickly reach a steady state. We consider inviscid flow about a NACA0012 with

M_ = 0.8, a -- 1.25 °. A 192 x 32 C mesh is used with 128 points on the airfoil. In [1] it is

pointed out that the standard code smears the weak shock on the lower surface. In Figure

1, we plot the result for the standard scheme, but without enthalpy damping. In Figure

2, we show the same case but using the matrix viscosity. The convergence rate is slowed

down since the fourth order viscosity is not as strong but the shock on the lower surface is

sharper. There is an overshoot on the shock on the upper surface. This is due to fact that

the cutoff (10b) is not sufficiently sharp. One way to improve this is to replace (7) by

[Pi+ld,k -- _i,j,k[ - IPi,l,k -- Pi-l,j,k[

v,,j,k -= ]P,+l,i,k - p,,j,k[ + IP¢,¢,k - Pi-l,i,_[ + c (Tb)

so that vid, k is one at discontinuities. One can also use the matrix coefficient only for

the second difference but use a scalar coefficient for the fourth difference viscosity. This

accelerates the convergence to a steady state but smears the shocks. The results presented

used a four step Runge-Kutta algorithm with the artificial viscosity frozen after the first

stage using a matrix viscosity rather than a scalar viscosity adds about 60% to the total

CPU time.
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Figure 1: Scalar viscosity
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Appendix

We present the matrix viscosity in explicit form for three dimensions in general curvi-

linear form. Let

be a change of variables from physical space (x, y, z) to a computational space (_, r/, g) such

that the curvilinear mesh is mapped to a cube. Then (lb) can be rewritten as

where

aQ OF OG OH

-_- + _ + _-_+ -_- =0

G = rl,f + yyg+ rl,h

H = gzf+gvg+gzh.

We next express (A1) in quasilinear form

_-+A +B +C =0

Let

OF OG OH
A- B- c-

aQ aQ aQ"

q = _::u H- _vv + _,w

(A1)

(A2)

(A3)

8

be the three contravariant velocities.

V _= _2_-(u2 + v 2 + w 2) then

0

al V 2 - uq

a2V _ - vq

a3V 2 - wq

-q(h- V _)

al

q- (7- 2)alu

aav - (7 - 1)a2u

alw- (7- 1)a3u

alh- (7- 1)qh

rh:U + rlvv + rl,w

Also define h = E+p as the total enthalpy and let
P

a2 as 0

a,w - (7- 1)asv q- (7- 2)azw (7- 1)as

,,_h- (7- 1)qv ,,_h- (,_- 1)qw 7q
(A4

8



al=_,, a2=_iv, as=_,.

For B we get a similar matrix with al = r/z, a2 = r/y, as = r/, and q replaced by r while

forGwehaveal=qz, a2=_'v, a3= G and q replaced by s"

Hence, we can find the absolute value of z_ll three matrices in the same way. Let us

assume that A has eigenvalues

)kl

k2 0

),s

0 ks

(A5)

where Xl = q + x/a_ + a_ + a_c,

redefined by (11) to prevent )_y from approaching zero.

In order to find [A I it is easier to use a tw,:> step procedure. Let

k, = q - V/(t_I_+ a] + a_c and k3 = q. In practice ky, are

AI = T:_AT{ I (A6)

be a symmetric matrix. Since we can symmelrize A, B, G simultaneously the same T1 will

work for all three matrices.

V 2

C

--it

--(q- 1)ulc -('7- 1)vie --('7-- 1)w/c ('7- 1)1c "_

1 0 0 0

0 1 0 0

0 0 1 0

-('7-- 1)u -(7- 1)v -('7- 1)w "7- 1

1 0
C

It 1
C

v 0
TI-I = c

w 0
C

h

C

0 0
C 2

It

0 0
C 2

1)
1 0

C 2

I13

0 1
C 2

1) tO

It2 + v 2 + w 2

2c 2

(A7)

9



x

s

As expected T1, T[ 1 do not depend on the matrice al, a2, a - 3.

q ale a2c asc 0

ale q 0 0 0

A1 - a2c 0 q 0 0 (A8)

aac 0 0 q 0

0 0 0 0 q

Since A1 (and B1, C1) is symmetric we can diagonalize it with a unitary matrix T2. T2 will

depend explicitly on ax,a2,a3 and so is different for A1,B1, el. Let A = Ca_ + a22+ a23 -# 0,
then

A al a2 as 0

and

1
T2-

-_ al a2 as 0

0 xl x2 Xs 0

Yl Y2 Y, 0

o o o v_._

2-1 ___ T2 $.

The (xj, yj) are numbers that satisfy the following equations

(A9)

Zl2+ z22+ z2=y[ + v_+ vl : 2_2

alxl + a2x2 + asX3 = alYl + a2Y2 + asys = 0

xlyl + x2y2 + x3Ys = 0

XlYl + x2y2+ xsvs = 0

xlx2 + YlY2 = -2ala2

xlxs + YlYs = -2ala3

(A10)

x2xs + Y2Ys = -2a2as.

It is difficult to give explicit formula for the xi, y_- in all cases since some of the a i may be

zero as long as a_ + al + as2 ¢ 0. However, the final formula does not depend on explicitly

knowing the a i. Given T2 we find that A (A5) is given by

A. = T2AIT_-I= T2TIA(T2T1) -1. (All)

10



We now reverse the process and define

IAI =
0

0

1:_31 / (A12)

where ,_j can be modified eigenvalues of A. Tlen

IAI = (T_TI)-_IAICT_T,). (A13)

Let
AI + A2

U1 -- _ir2 --
2 2

and define the row vectors

ll = (7 - 1)( u2 + v2 + w2
2 ,--u,--v,--w,i)

(A14)

(A15)

12 = (-q, al, as, as, 0).

We then have the matrices

I = 5 x 5 identity member

g, = (e,, ul,, re1, Wll, hll)'

Zs = (_2, u£2 -I- alt.l, V_s -I- a_l, W_ -Jr- asel,h_ + qel) t

Z3 = (o, axg2,a2e2,a3_,qe2)'

and finally,

Because of the simple nature of the matrices _i it is easy to multiply IAI times a vector.

D e fine,

rx = (1, u,o,w,h) t

r2 = (0, ax,-2, as, q)'.

Let ( , ) denote the standard inner product, then

(_l,rl) : Cs

(_l,r2) : 0

11



(12, rl) = 0

(_2,r2)= _2

and if x is any column vector, then

[( ) I [°,tAIz= Asz+ Ol- _,_ (ll,Z) + ,,2 z) rl+ +_2 _Cl2, _(ll,Z) - _) ]("la 2 (12,z) r2. (A18)

i2
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